A A

I ¥

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
OF SOCIETY

Relaxation Methods Applied to Engineering Problems IX.
High-Speed Flow of Compressible Fluid through a
Two-Dimensional Nozzle

J. R. Green and R. V. Southwell

Phil. Trans. R. Soc. Lond. A 1944 239, 367-386
doi: 10.1098/rsta.1944.0002

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand
corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1944 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;239/808/367&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/239/808/367.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

A\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

[ 367 ]

RELAXATION METHODS APPLIED TO ENGINEERING
PROBLEMS

IX. HIGH-SPEED FLOW OF COMPRESSIBLE FLUID THROUGH
A TWO-DIMENSIONAL NOZZLE

By J. R. GREEN, D.PaiL. anp R. V. SOUTHWELL, F.R.S.

(Recerved 13 May 1943)

Methods developed in Parts III and V of this series are here extended to the more difficult problem
of compressible fluid moving at high speed through a convergent-divergent nozzle. Solutions of
sufficient accuracy for practical purposes can be obtained for a nozzle of any specified shape,
provided that the velocity of the fluid nowhere exceeds the local speed of sound. Otherwise the
computed velocities fail to converge—a result similar to what was obtained by Taylor and Sharman
using an electrical tank.

The reason of this failure is discussed, and an alternative method (nof in itself entailing the
‘relaxation’ technique) is proposed to meet the difficulty. In a subsequent paper this will be
applied to determine the supersonic regime.

INTRODUCTION AND SUMMARY

1. The equations which govern the motion of compressible fluid (e.g. the flow of steam
through a nozzle) present great difficulties even when the fluid is assumed to be inviscid and
as such to ‘slip’ freely over a solid boundary. Osborne Reynolds’s well-known treatment
(1886) in effect assumed the velocity to be uniformly distributed over each cross-section,
therefore dealt with a problem rendered one-dimensional by assumption. In two dimensions
very few exact solutions have been discovered, and these relate to cases (e.g. line-vortices,
and radial or spiral flow to or from a sink or source) which are not realizable in practice.
The basic difficulty, of course, is the inapplicability of the principle of superposition.

Rayleigh (1916) attacked the two-dimensional problem by a method of successive approxi-
mation, but even in the case of flow past a circular cylinder he was not able to proceed very
far. Bryan (1918) suggested a semi-graphical method which has not in fact led to results.
Taylor & Sharman (1928) utilized an electrical analogue to obtain solutions by experiment:
their method is one of ‘cut-and-try’, and was not successful when the local speed of sound
was exceeded at any point.

This being the state of theory, a numencal method which is general will have value even
though it be incapable of giving very exact results. Here we present a relaxational treatment
of nozzles which as we believe has amply sufficient accuracy for practical purposes. Like
the electrical tank it fails when the local speed of sound is attained in some part of the field,
and in our concluding section we propose an alternative method to meet this difficulty.

Although most of the material now presented has been in existence for some two years, we
had not intended publication until a complete solution (covering the ‘supersonic’ regime)
could be presented. Now, however, circumstances are altered in that one of us (J.R. G.)
will be leaving this country shortly for Australia; and on that account (since the new method
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368 J. R. GREEN AND R. V. SOUTHWELL ON RELAXATION

was developed only in the last few weeks) it has seemed desirable to record this partial treat-
ment now, leaving the supersonic regime for discussion later. It has still to be established
that the alternative method does in fact converge under supersonic conditions.

I. GeEnNErRAL THEORY
The governing equations

2. Assuming the motion to be irrotational, we can express the component velocities u
and v as derivatives of a velocity potential ¢. Moreover, the equation of continuity

%(ﬂu)+a“(;(ﬂ”) =0 (1)

(which states that there can be no steady accumulation of mass at any point) permits the
introduction of a ‘mass-flow function’ . Accordingly we may write

19~ 9¢ Loy 04
pay T e T T T Ty ®)
and then, eliminating ¥ and ¢ in turn from (2), we have
d( 0\, d( d¢\
gelr3e) gl ) = ®)
d 1y, 0 (1dy\
and ailpae) T ayp3y) = “

as alternative forms of the governing equation.

3. The difliculty of our problem lies in the circumstance that p is additionally related
with « and v in virtue of its dependence on the local pressure. If we postulate that there is no
transfer of energy between contiguous elements of the fluid,* and if the fluid is assumed to
start from rest in a reservoir where its state is known, then its total energy will have the same
value at every point; so if p, p and ¢ denote the pressure, density and velocity of the fluid,
and if body forces are inoperative or negligible, then

dp
£ plg2 -9 5
fO 0 29 ( J
when the lower limit of integration relates to the starting conditions, so that ¢, = 0. More-
over p and p will conform with some known law of adiabatic expansion, e.g. with the relatior

plp? = const. = py/p} (6

in the case of a perfect gas, y denoting the ratio of the specific heats at constant pressure anc
at constant volume. Consequently by eliminating p we can relate the density and velocit-
at any point in the fluid field. :

* Already, in postulating irrotational motion, we have excluded the possibility of transfer due to friction
and heat conduction will be negligible when the speed of flow is high.
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METHODS APPLIED TO ENGINEERING PROBLEMS 369

As obtained from (5) and (6) the relation can be written in the form

2
¢ = y—1 (a§—a?), (7)
a standing for the velocity of sound at the point in question, so that

a* = yplp = yp,p?~"/p} according to (6). (8)

On our assumptions, (7) and (8) will hold exactly in respect of a perfect gas, and with
sufficient accuracy (y having the value 1-4) in respect of air. For steam, (6) and therefore
(7) will hold approximately when y is replaced by an appropriate constant of the order of
1-3 (Ewing 1926, § 134). Alternatively, (7) and (8) may be replaced by an empirical relation
between p and ¢

4. Thus for any fluid we can relate p and ¢?, therefore p and p%¢?; i.e. the form of F'is known
in the expression

X* (say) = % = F(p*¢?)
(9)

(N2 (39
=75 ()]
by (2), since ¢*> = u?+v% Equation (4) can now be written as
d(209\, 9 23_!/5) _
5] ) = ©
10
and this in turn (multiplied throughout by 1/x) as J (10)
VE(uy) =y Vi = 0,

V2 denoting the operator 92/dx%+9%/dy>.
We shall take (9) and (10) as the governing equations of our problem, combined with
boundary conditions which (for a symmetrical nozzle) may be written as

¥ = 0 on the centre-line, : \ a

¥ = const. = M (say), on the nozzle wall.

Then, according to (2)

2M measures the total mass flow through the nozzle. (12)

Elimination of * dimensional’ factors

5. Computation being essentially a numerical process, at the outset it is desirable to
eliminate ‘dimensional’ factors from the governing équations.

First, the relation between p and ¢ can be expressed as a relation between p/p, and g/a,,
a, being the velocity of sound which corresponds with the initial state of the fluid (viz. of
rest in the reservoir). According to (7) and (8) we have

(-0 9

45-2
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370 J. R. GREEN AND R. V. SOUTHWELL ON RELAXATION

and for steam a corresponding relation can be deduced from empirical data. Consequently
(9) can be replaced by a relation between the purely numerical quantities p/p, and pg/p,a,,
viz.

polp = F(p*q*/p§as). (i1)

F has, of course, a slightly different form in (ii) as compared with (9).

Q 256" / 4-85" ’
B / . / B'
4

7
Ficure 1
Now writing x=1Tx, y=Ty, p=pyp, ¥ =My
and x'? for 1/p" = pox?, ¢’ for g/a,
where 27 (cf. figure 1) denotes the throat width of the nozzle, and (13)

M has the significance stated in (12), so that

M| T measures the average mass flow per unit area of throat

wehaveffom(Q)and(B) P Y
P = () +(7§§) = 7e{(7) +(7?§) |
consequently (ii) may be written as
X = ;; = F(p"q"?) = F[ﬁ{(%)z (% )2}] (iii)

where = M/pya, T, the average mass flow per unit throat area

3

expressed as a_fraction of p,a,. (14)

The form of (10) is conserved: i.e. on substituting from (13) we have

VX)) =V =0, i

V2 denoting the operator 02[0x"2+02/dy 2. J (iv)
Finally, on substituting from (13) in the boundary conditions (11) we have
Y’ = 0 on the centre line |
’ (15

— 1 on the nozzle wall.
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METHODS APPLIED TO ENGINEERING PROBLEMS 371

Conformal transformation of the fluid field

6. The problem for relaxation methods is to determine ¥’ with sufficient accuracy by
computation, and for this we require its values at a large number of points in the ‘field’
between the two curved boundaries. The obvious procedure would be to employ a rect-
angular net conforming with the Cartesian coordinates x’, y’; but we can simplify the
numerical computations by utilizing the device of conformal transformation, effected by
the methods of Part V (Gandy & Southwell 1940).

Qv
sl s
" E T
»
%A A
|
Throat.
FIGURE 24
B Bl
Y]
oA A
[
o0 Throat
Ficure 24

Thereby we obtain the curvilinear net shown (diagrammatically) in figure 2a4. It is
composed of intersecting contours of two conjugate plane-harmonic functions o and f, of
which £is defined by the requirements that it vanishes on the centre line of the (symmetrical)
nozzle, has a constant value f§, (say) on the nozzle wall, and increases from 0 to that value
at uniform rates along two circular arcs 4B, 4'B’ which cut the nozzle wall orthogonally
at points B, B’ well upstream and well downstream of the ‘throat’. The introduction of
AB, A'B’ is obligatory because the field of computation must be limited: their shapes and
positions are arbitrary, provided that the assumed variation of f is such that contours of
§ are stream-lines for an incompressible fluid passing right through the nozzle. Being depen-
dent on the conditions at entry and at exit, these stream-lines can only be guessed. Our
choice of circular arcs for AB, A’B’ and of uniform gradients for § presumes that in the con-
vergent and divergent parts of the nozzle the flow of the incompressible fluid is effectively
radial and uniform, as in symmetrical flow to and from a point.
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372 J. R. GREEN AND R. V. SOUTHWELL ON RELAXATION

7. Thus specified, f is calculable and contours of f§ will be members of a family which
" includes the centre line and the wall of the nozzle. The conjugate function « can be deduced
(apart from a nugatory constant of integration) by the methods developed in Part V, and
its contours will cut the f-contours orthogonally. None of them (in general) will exactly
coincide with AB, 4’B’, because along those curves £ will not accord exactly with the stream
function of an incompressible fluid passing right through the nozzle; but in fact the dis-
crepancy is small and such that no sensible inaccuracy need be suspected in the region of
the ‘throat’.

Any convenient value f;, may be attached to £ at the nozzle wall, and any convenient
number of contours may be mapped: in our net (figure 7 ) the contour values of £ increase
from 0 to 10°% by increments of 2 x 104, and the same increments separate contour values of a.
A one-to-one correspondence obtains between points on the curvilinear net and points in
the a-f plane; points on the centre line of the nozzle (where f = 0) correspond with the axis
of a, and points on the nozzle wall with the horizontal line (# = 10%). The curvilinear ‘field’
of figure 2a is transformed into the ruled rectangle of figure 24, and any physical quantity
determined as a function of « and £ in figure 254 can also be plotted as a function of x" and
y' in figure 2a. Consequently velocities, efc. can be computed on a net of square mesh having no
‘unequal stars’ (Part I1I, §§ 23—4), and this makes for considerable simplification.

8. Let / stand for the modulus of transformation, so that

da\%  (da\?  (0F\%  (OF)?
=(50) +(5) = o) +(oy) - (19
Then in (iii) and (iv) of § 5 we may substitute

W\ (Y AN AY
2
(%) (a/f) | o (G0) +ay I

and h?VZ% 5 for V' (17)
(V2,; denoting the operator 9%/da*-t9%/9f?)

d(a+1h) |?
~d(x +1y)

to obtain F[ﬂZ/ZZ{(W) +(a;/§) ﬂ (18)

and 2 X)) =Y’ Vi gy =0 (19)

as governing equations of the transformed problem.
According to (15) the boundary conditions are

Y'=0 when f=0, l
—1 when f=4,)
[, being the value so denoted in § 6. To make the problem definite we have only (@) to

specify the shape of the nozzle and the value of the mass-flow constant x as defined in (14),
and (b) to define the form of the function # in (18).

(20)


http://rsta.royalsocietypublishing.org/

A\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
1~

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

METHODS APPLIED TO ENGINEERING PROBLEMS 373

The computational problem

9. Hereafter we shall suppress the dashes which have been attached to x and ¥, so that in what

follows
x stands for p,/p; My is the mass-flow function (§ 2).

2 2 21
We shall, moreover, write V2, simply, for \%3 ﬁz%—l—;ﬁ—z. (1)

On this understanding, in ‘non-dimensional’ Cartesian co-ordinates , £, and on a rectangular
net bounded by the straight lines # = 0, § = 105, our problem is to satisfy the equation

VE(xy) —yVir =10 (19A)
at every point, together with the relation
| W2 | ()
-l G oo
in which
k2 has a known distribution (derived by conformal transformation, §§ 6—8),} 14) B
U= M/pya,T is a specified (‘mass-flow’) parameter, (14) bis
and the form of the function F is known for the specified fluid. The quantity
P\ - (0Y\?
2p2 (7Y VNN prepre — p202/,2 42
1h {(aa) +(3ﬁ) } p'*q* = p*g*lp}at,
where
p denotes the local density, L (22)

q denotes the local velocity,
po denotes the density of the fluid at starting (from rest),

a, denotes the speed of sound in the fluid when at rest with density p,, pressure p,.)

Assumed state of fluid at starting. Relation of density to velocity

10. In this paper we treat the case of air started from rest in a reservoir where its tem-
perature is 15° C and its pressure 100 1b./sq.in. (absolute). Then for pound-foot-second units
(R — 96g) ~

%0 = 96gx 288 and p,= 100gx 144;
0
1 96 x 288

therefore P T 100 x 144

= 1-92,

and giving to y for air the value 1-4 we deduce from (8) that
@3 = ypy/po = 1400g x 144 x 1-92 = 12,463,718 ft.-sec. units (g = 32-2).

Equation (i), § 5, becomes

e R
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374 J. R. GREEN AND R. V. SOUTHWELL ON RELAXATION

consequently p'2q'? = 5p"*(1—p'%*%) = 5y~ *(1—y"%) (23)

when y has non-dimensional significance (§9). Hence, plotting p'2¢’? against y2, we can
derive the form of F appropriate to our assumed starting conditions. Figure 3 shows p’q’
and ¢’ (= x%’q’) plotted against y.

We deduce from (23) that p’¢’, for the assumed starting conditions, cannot have a value
in excess of (5/6)% = 0-578,704. Consequently M, in (11), cannot exceed 0-579p,a,7;
i.e. 4, in (14) and (18), 30-579 (42+0-335). This accords with the conclusions of Osborne
Reynolds (1886). '

o-8 20

69

o6

Pq
/4
Xt" ?'qr = ql

o2 03

o5 10 15 2:0 25 30

X
Ficure 3

An approximate alternative to the governing equation (19)

11. A simplified treatment will have value in the early stages of computation. It is
clear that ¢ will vary much faster with £ than with «, and y, if not faster, at least not much
more slowly. This means that the f-differentials will predominate in (19), so that without
serious error we may suppress the a-differentials to obtain

3%(;(2 %) = 0, whence f% = const. = 4 (say). (24)

Equally dy/df will predominate over dy/dx in the expression (22) for p'%¢'2, so that without
serious error* we may suppress the a-differential to obtain

w3 = (25)

* Here, in fact, the error is of second order when (9y/de)/(0yr/08) is small (cf. § 22).
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METHODS APPLIED TO ENGINEERING PROBLEMS 375
Now eliminating dy/df, we have approximately _
g = p'q'x* = Aph, (26)
oy _
where, by the second of (24), ¥ — f 4p — 4 f v2dp. (27)

Applied to (27), the boundary COl’ldlthIl (20) gives

1= Ajﬁl x“2dp, ie. pu= ‘u/l‘f"?l x~2dp. (28)
0 0
10 \

025

q‘

FIGURE 4a

06

p /
04 / \ -
Pomax,
02
M
[e] - \ .
(] M 05 10 5 N 20 25
Au
FIGURE 4

Vor. 239. A 46
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x~%, in these equations, is uniquely related with ¢’. Figure 3, for example, yields the curve
of figure 44, in which :
¢ =pq=JBEI—y ")}
according to (23), §10. In every case ¢’ will have a limited range (0< ¢’ <./5 for this last
expression).

12. For every a-line of our rectangular net we shall have (when the conformal trans-
formation of §§ 6-8 has been effected) a known distribution of the quantity 4. Consequently
we can, for any assumed value of 4z such that Auk nowhere exceeds the limiting value of ¢’
(/5 in figure 4a), deduce a distribution of ¢" and hence, using figure 4a or its analytical
expression, a distribution of 2. Then, evaluating the integral in the second of (28) and
inserting the assumed value of Ay, we have a corresponding value for 4, so can construct
a curve of the type shown in figure 44. p will be zero at both ends of the range of Ax, and
it will have a maximum value (4, , say) at some intermediate point.

Having this curve, for any value g, (say) less than #,,, we can deduce two values of A,
and hence of 4, whereby (28) can be satisfied: thus in figure 44 (on its scale of Au)

OM = # Asub.’ ON = :ulA

sup.’

OM entailing subsonic and ON supersonic velocities at the section considered. Inserting
either value of 4 in (26) and (27), we can compute y for all nodal points in the section.

II. TurorETICAL BASIS OF THE RELAXATION APPROAGH

Finite-difference approximations to the governing equations

13. Approximate treatment on the lines of §§ 11-12 entails no more than numerical
integration with a use of Simpson’s rule or some other approximate formula. We revert
now to the exact equations of § 9.

It was shown in Part ITI of this series (Christopherson & Southwell 1938, § 8) that for nets
of square mesh, such as are obtained by conformal transformation in the manner of §§ 6-7,
the identity

2,4(w) — 4wy = a?(Vw), (29)
holds with neglect of terms of order a%, df, ..., etc. on the right-hand side. Consequently
with neglect of terms of order a* (at least) in comparison with unity we may replace (19 A),

§9, by
(XW 4(x¢)o = Vo, +(X) — 4o}

i.e. by a, 2, .(xy) =¥, 2, a, (- (30)

In (29) and (30), a stands for the side of each square mesh of the net, X, ,(w) for the sum of
the w-values at the four points which surround 0 symmetrically at a distance a (measured in
terms of « and f).

It was shown in Part V (Gandy & Southwell 1940, § 13) that with similar approximation
we may in (18 A) replace

(o)) by 20+ HE ) 25 )] = o SLA), say,  (31)
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Ay typifying the difference between ¢, and the y-value at an adjacent node, and Z' denoting

a summation of the four differences of this kind for the point considered. A hke approxi-
mation can be used to compute 42 according to (16).

The ‘relaxation pattern’

14. The relaxation method (cf. Part ITI, § 11) uses these finite-difference approximations
but introduces ‘residual forces’ to express the error of the computed displacements, and
derives a ‘relaxation pattern’ whereby those forces can be ‘liquidated’ (i.e. reduced to
negligible magnitudes). Here, according to (30), the residual force at 0 is defined by

F, = 2a,4(X¢) —¥ 2a,4(X)s (32)

x and o being now ‘non-dimensional’ (§9); and we deduce that an infinitesimal increment
8y, given to ¥, (¢ being left unaltered at every other pomt) will entail increments to the
residual forces as under:

0F, = Za,z;('ﬁé\?() “¢02a,4(37() —0%0-24,4(X)s
O(F, By, Fy, By) = 0. Xo+¥0-0Xo— (V1> Vo> V3> ¥a) OXos (i)
OBy, By, B, By) = (Y1 —¥4) Ox1s (V2 — V) Oxos (Vs — V) Oxss (Va—¥p) s

In these expressions, dy denotes the increment to y which is entailed by 0y, and the
suffixes 1, 2, 3, 4, 4, B, C, D relate to points so designated in figure 5. Now (18 A) and (22),
§ 9, show that y is a known function of

s (L) + () — s, s, .
% (i)
so we may write x = f#2h*x?), 2
fbeing known; and then for infinitesimal increments . , . ' .
' Oy = f"(12h2?) u2h2ox?, )
where, according to (31), for an increment ¥, in ¥, only, :
(3:%) = 2 (4= Z, 01, () ¥
Ficure 5
b}
CONE f— (bo—r25.0)- |
Consequently in the expressions (i) we may write
B0 =" (ko) [44hy— 5, ( ()] 6
Xo ="z S (12h2x?) [0 — 2, (V)] 0%,
(33)
/"2/22 ' 125242 a
3X1,2,3,4 = —ﬁf (#2h*x?) (%0“%1,2,3,4) Yo
W d .
and then, if G stands for ‘u f (U2h2x?%) = a}'j d(,o’2Xq 2y by (ii), (34)

46-2
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it follows that when quantities of the second and higher orders in ), are neglected
oF, = — 5¢0{2a,4(X) +G %‘ [V —¥0)%1},

OF; = 0Yo[xo+G(¥1—¥0) {Z'a,;(;ﬁ) — 4% o}],

..., etc. (85)
OF; = =0 G (Y1 — Vo) (1—¥4)s
..., €tC.
20 \ 2
p \\ X
I

ax
af’q?)
SUB-SONIC
[} /‘ o
;%,%ﬂ\.w\
/ |

o 02 03 0-4
(e'q)

Ficure 6

Ay
d(p'%q'"%)
with ¥ by (22). Using (85), we can for any point 0 (given y-values for 0, 1, 2, 3,4, 4, B, C, D
and y-values for 0, 1, 2, 3, 4) compute a relaxation pattern giving the effects of a small
increment 8, to the value of ¥, upon the residual forces at all points in figure 5. Because
in any event this will not hold exactly in respect of any but infinitesimal increments, and
for that reason will alter as liquidation becomes more complete, there is no point in com-
puting the pattern with great accuracy. What is more important is that the residual forces
should be known with certainty, and to this end y-values must be accurately computed*
in the later stages of the work.

Figure 6 (deduced from figure 3) shows y and plotted against p’2¢? as related

* Le. with all the accuracy which is permitted by the formula (31) and by the similar approximation to A2.
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ITII. OvutLINE oF COMPUTATIONS EFFECTED BY THE RELAXATIQN TECHNIQUE

15. Given a shape of nozzle, the first requirements are (§§6-8) a conformal trans-
formation of this shape into a rectangle and an evaluation of / at nodal points of the resulting
(square) net. Our work presumed a nozzle having the form shown in figure 1, this being
the shape employed by M. W. Woods in some recent experiments (directed by Mr A. M.
Binnie) on the flow of steam.* Transformation was effected with the aid of a #riangular
net,T and the resulting values of % (figure 7¢) are believed correct to at least 3 significant
figures.t They depend, of course, on the value assumed for £ at the nozzle wall: we gave §
the value 10° (cf. §7), and for this value # was found to have a maximum value 103,800 at
a point on the nozzle wall close to the throat. The range of @ was from 0 to 8:6 x 103, so the
a-f net (on which all subsequent operations were performed) was a rectangle having sides
in the ratio 8:6:1 (figure 25). Its mesh size a was made 2x 10* (§7).

16. Next, the physical properties of the fluid must be postulated, and its state at starting
(from rest in a reservoir): our assumptions have been stated in § 10. Then, to define the
problem completely, a value must be attached to the ‘mass-flow parameter’ x4, defined
in (14).

It has been shown (§10) that x is certainly less than 0-578; (42<<0-335), this being
the value at which, according to Osborne Reynolds’s theory, the velocity of sound is
attained at the throat. We decided to approach this value from below, and to explore the
flow for a series of subsonic conditions. Calculations were accordingly made for four cases
as under:

Case i (M| T)? (Ib.-ft.-sec. units)
1 0-486,4; 80,000
2 0-515,9, 90,000
3 0-543,8; 100,000
4 0-575,55 112,000

Case 4 was expected (and was found) to give velocities just attaining to the speed of sound
at a point in the throat section and on the nozzle wall.

17. Our first attack on these cases was made on the basis of the ‘ point-relaxation method’
of §8 13-14,—the approximate treatment of §§ 11-12 had not then (1938—40) been devised.

Starting from some assumed distribution of ¥ (say, ¥ = f, simply), the procedure was to
compute p'%¢’? from (22) for mesh-points of the rectangular net, taking values of 4 from
figure 7¢; then to deduce y-values in accordance with figure 6 and initial values of residual
forces according to (32). Next, with ‘patterns’ computed (roughly) from (35), a partial
liquidation of residuals was effected; after which the whole procedure could be repeated
with its starting assumption thus improved. Although laborious the method entailed no
serious difficulty, and 3-figure accuracy (at least) is claimed for the results presented in
figures 8-11.

* Cf. Binnie & Woods (1938).

+ Of side T/3-548. Figures 7 reproduce only about one-half of the length of our actual diagrams.

1 Full use was made of the fact that log % is plane-harmonic (cf. Part V, §17), and in fact the values given
in figure 7¢ satisfy the requirement with 5-figure accuracy.
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18. Under supersonic conditions, on the other
hand, this technique failed to yield definite results.

3
lsa20

The failure was not unexpected, in view of similar " . Q
failure of the electrical tank: Taylor & Sharman b n
(1928) found that below the speed of sound they A s b b s | N
could satisfy-(4) together with the boundary condi- g Bl N
tion by a process entailing successive modifications 1B 1l |
of an assumed density distribution, but above the <
speed of sound these modifications become oscillatory [ & # i |
or divergent, and in consequence the method failed. d 0 Is
. . . R R OR 88 ]g

Our own difficulty in treating flow through a nozzle = i
we ascribed to some kind of instability appearing v b b s ; E =
downstream of the throat, whereby any disturbance . 1S
(implicit in an assumed solution) would be magnified N 5
without limit. (Figure 6 shows that G, in (34), tends ? s
to an infinite value corresponding with the speed of I I
sound; so near the throat, and for supersonic flow, I H !§
the ‘relaxation patterns’ which come from (35) must ; %_F 2
involve very large numbers.) : : g : z é = R

19. Itwas in these circumstances that the alterna- L b R
tive method of §§11-12 was devised. In that method, s | 5 0 2
for each a-line of the rectangular net a curve (typified § A &
by figure 44) is derived from which, for any permis- H ] i Q 2
sible value of 4, two acceptable values of 4, in (26) 5 i 2_—;‘ fod .

and (27),canbefound. One 4-value yields a subsonic,
the other a supersonic system of velocities.

mm7mlrm:mmm

H
m
S kB
. . A\ LI /

It was shown (§12) that in the problem of this A T Vard
paper (§10), since ¢’ has an analytical expression in s i s b 8 gfl 8 <
terms of y, (26) can be replaced by B/l b bk \ 1 =
phd = J{5(1—x~%%)}, giving y~?= (1_”2’12*42)2'5 [/ "% ¢ \

’ 5 ) i kb o= N
Consequently (28) can be written in the form ( ;’; f?a“\ N S
2 ) 2),2 42\ 25 ("lﬁ —1 87
= -2 — _H e i ~
1 Afo x-2df (as before) qu (1 : ) d, i =
(36) o .
and a similar substitution can be made for (27). 5 “&"\\

/ /:‘b//

il

Extension of the alternative (approximate) method
of §§11-12
20. Before conclusions could be based on the
method, the order of its accuracy had to be decided.
To this end we applied it to two of the four cases,
listed in § 16, which had already been treated by
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point-relaxation’ methods; our criterion of its accuracy being the approximation to which
it reproduced the previously computed values of p’ (= y~2). Grateful acknowledgment is
made of assistance given by Dr L. Fox and Miss G. Vaisey in this part of the investigation.
Broken lines in figures 8 and 11 are contours deduced by the alternative method: only
those shown were distinguishable from the full-line contours (relating to § 17). The smaller
of each pair of values of 4 (§19) led to these subsonic solutions.

21. These results being deemed satisfactory, we proceeded to employ the method in the
supersonic range and, for the resulting y-values, to deduce residual forces according to (32).
These were negligible for sections downstream from the throat by more than the whole
throat width (27 in figure 1). They were however, near the throat, too large to be accepted;
and previous experience (§18) gave little reason to expect that ‘point relaxation’ would
serve to liquidate them. Accordingly we sought to improve the accuracy of the alternative
method by an extension on ¢ferative lines.

22. The first of (24) was an approximation to

/J’( 0?) ﬁa(x ??Z) (37)

which can be identified with (19 A), §9. Giving the term on the right its value as deduced
in the manner of § 21, we can integrate (37) to obtain a second approximation to y2(3y/df).

(25), similarly, was an approximation to (22); but in this instance, dy/da being small
in relation to dy/df, the error is of the second order, so can be accepted. Accordingly we
now combine

(7 .
9? p'q (25) bus
with — A f 9“( 004) | (38)
which comes from (37) and replaces (24). Thereby we obtain, in place of (26)
¢ =p'qx* = Auh—ph F(), (39)
) ’ 1 B
" and in place of (28) 1= 4 f P dp— f V2 F(R) df, (40)
~ 0 0

where 4 as before is a constant of integration, and

#p) = [ (255 (41)

is a function of § which, as stated above, we can with sufficient approximation deduce
from our first solution.

23. When (39) and (40) are thus substituted for (26) and (28), the procedure of §12
ceases to be applicable for the reason that ¢’ is not deducible from (39), as it was from (26),
for an assumed value of Ax. But it is the basis of our method that F(f) will be small and that
the new value of # will differ but little from p,, the value which corresponds with the assumed
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Ap according to our first approximation: consequently it will be sufficiently accurate to
replace (39) and (40) by

q = p'q'x* = Aph—ph F(f),

s s (42)
and by p=dp [ | F ()
and then (g, and F(f) being known) the construction of a curve of the type of figure 45
can proceed as before. A ‘

Any approximation, taken as a starting solution, can be thus improved. So our iterative
process seems capable of giving any required accuracy within the subsonic range.

Application of the extended method to supersonic conditions

24. But a new difficulty is confronted when the supersonic regime is in question, because x
must then have its limiting value,—namely, that for which Osborne Reynolds’s simplified
theory yields the approximation 0-579 (§10),—and this value is no known in advance. If we
assume too low a value, then the regime will be subsonic throughout; whereas too high a
value is physically inadmissible and can lead to no real results. It is of great importance
therefore—even in an approximate treatment—to have the closest possible estimate of the
correct (i.e. limiting) value.

Fortunately this presents no great difficulty. In the simplified treatment of §§ 11-12 (and
in the extension outlined in §23) we construct for every section a curve, of the type of
figure 45, in which g ranges from 0 to some maximum value g, . Only values less than
limay. are admissible, and so (since in any possible regime x will have the same value for
every section) the wanted (limiting) value of x is the least 4, which is discoverable by our
analysis. It will be the #,,, for some section near the throat, but it is not certain that this
section will be one of those that we have investigated. However, having values of 4, for
three or four values of « near the throat, it is an easy matter to deduce (by customary finite-
difference methods) the a-value for which g, has its minimum value, and thence to
compute this minimum. Now accepting the estimated value (#, say), and reverting to the
curves (of type figure 45) which have been constructed from other sections, it is again an
easy matter to deduce for each of them a value of 4, (§12) and with this to compute
for the relevant section. Proceeding in this manner, provided that the iterative process is convergent,
we shall arrive, finally, at a unique supersonic regime, entailing a definite pressure at every point.

CONCLUSION

25. The alternative (‘strip integration’) method of §§11-12 and §§ 22-3 has no feature
properly described as ‘relaxational’, consequently an investigation by that method of the
supersonic regime is hardly appropriate to the present series, but should form the subject
of a separate paper. We had intended to complete it before communicating this partial
(subsonic) study; but that decision has been altered by circumstances (cf. §1) which
prevent any further collaboration.
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